Задания
Версия для печати и копирования в MS Word
Тип Д25 C5 № 3661
i

На ди­фрак­ци­он­ную ре­шет­ку с пе­ри­о­дом d=2 мкм нор­маль­но па­да­ет пучок света, со­сто­я­щий из фо­то­нов с им­пуль­сом p=1,32 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 27 пра­вая круг­лая скоб­ка кг умно­жить на м/с. Под каким углом \varphi к на­прав­ле­нию па­де­ния пучка на­блю­да­ет­ся ди­фрак­ци­он­ный мак­си­мум вто­ро­го по­ряд­ка?

Спрятать решение

Ре­ше­ние.

Углы, опре­де­ля­ю­щие на­прав­ле­ния на ди­фрак­ци­он­ные мак­си­му­мы, при нор­маль­ном па­де­нии пучка на ре­шет­ку удо­вле­тво­ря­ют усло­вию d синус \varphi =m\lambda , где \lambda —  длина волны света, m=2.

Им­пульс фо­то­на свя­зан с его дли­ной волны \lambda со­от­но­ше­ни­ем p= дробь: чис­ли­тель: h, зна­ме­на­тель: \lambda конец дроби , где h  — по­сто­ян­ная План­ка. Из за­пи­сан­ных со­от­но­ше­ний на­хо­дим:

 синус \varphi = дробь: чис­ли­тель: m\lambda , зна­ме­на­тель: d конец дроби = дробь: чис­ли­тель: mh, зна­ме­на­тель: pd конец дроби = дробь: чис­ли­тель: 2 умно­жить на 6,6 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 34 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 2 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 6 пра­вая круг­лая скоб­ка умно­жить на 1,32 умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка минус 27 пра­вая круг­лая скоб­ка конец дроби =0,5.

Таким об­ра­зом, \varphi = арк­си­нус 0,5=30 гра­ду­сов .

 

Ответ: \varphi = арк­си­нус дробь: чис­ли­тель: mh, зна­ме­на­тель: pd конец дроби = арк­си­нус 0,5=30 гра­ду­сов левая круг­лая скоб­ка m=2 пра­вая круг­лая скоб­ка .

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния от­ве­та на за­да­ние С6 Баллы
При­ве­де­но пол­ное ре­ше­ние, вклю­ча­ю­щее сле­ду­ю­щие эле­мен­ты:
I) за­пи­са­ны по­ло­же­ния тео­рии и фи­зи­че­ские за­ко­ны, за­ко­но­мер­но­сти, при­ме­не­ние ко­то­рых не­об­хо­ди­мо для ре­ше­ния за­да­чи вы­бран­ным спо­со­бом;
II) опи­са­ны все вво­ди­мые в ре­ше­нии бук­вен­ные обо­зна­че­ния фи­зи­че­ских ве­ли­чин (за ис­клю­че­ни­ем обо­зна­че­ний кон­стант, ука­зан­ных в ва­ри­ан­те КИМ, и обо­зна­че­ний, ис­поль­зу­е­мых в усло­вии за­да­чи);
III) про­ве­де­ны не­об­хо­ди­мые ма­те­ма­ти­че­ские пре­об­ра­зо­ва­ния (до­пус­ка­ет­ся вер­баль­ное ука­за­ние на их про­ве­де­ние) и рас­че­ты, при­во­дя­щие к пра­виль­но­му чис­ло­во­му от­ве­ту (до­пус­ка­ет­ся ре­ше­ние «по ча­стям» с про­ме­жу­точ­ны­ми вы­чис­ле­ни­я­ми);
IV) пред­став­лен пра­виль­ный ответ с ука­за­ни­ем еди­ниц из­ме­ре­ния ис­ко­мой ве­ли­чи­ны.
3
Пра­виль­но за­пи­са­ны все не­об­хо­ди­мые по­ло­же­ния тео­рии, фи­зи­че­ские за­ко­ны, за­ко­но­мер­но­сти, и про­ве­де­ны не­об­хо­ди­мые пре­об­ра­зо­ва­ния. Но име­ют­ся сле­ду­ю­щие не­до­стат­ки.
За­пи­си, со­от­вет­ству­ю­щие пунк­ту II, пред­став­ле­ны не в пол­ном объ­е­ме или от­сут­ству­ют.

ИЛИ

В ре­ше­нии лиш­ние за­пи­си, не вхо­дя­щие в ре­ше­ние (воз­мож­но, не­вер­ные), не от­де­ле­ны от ре­ше­ния (не за­черк­ну­ты, не за­клю­че­ны в скоб­ки, рамку и т. п.).

ИЛИ

В не­об­хо­ди­мых ма­те­ма­ти­че­ских пре­об­ра­зо­ва­ни­ях или вы­чис­ле­ни­ях до­пу­ще­ны ошиб­ки, и (или) пре­об­ра­зо­ва­ния/вы­чис­ле­ния не до­ве­де­ны до конца.

ИЛИ

От­сут­ству­ет пункт IV, или в нем до­пу­ще­на ошиб­ка.

2
Пред­став­ле­ны за­пи­си, со­от­вет­ству­ю­щие од­но­му из сле­ду­ю­щих слу­ча­ев.
Пред­став­ле­ны толь­ко по­ло­же­ния и фор­му­лы, вы­ра­жа­ю­щие фи­зи­че­ские за­ко­ны, при­ме­не­ние ко­то­рых не­об­хо­ди­мо для ре­ше­ния за­да­чи, без каких-⁠либо пре­об­ра­зо­ва­ний с их ис­поль­зо­ва­ни­ем, на­прав­лен­ных на ре­ше­ние за­да­чи, и от­ве­та.

ИЛИ

В ре­ше­нии от­сут­ству­ет ОДНА из ис­ход­ных фор­мул, не­об­хо­ди­мая для ре­ше­ния за­да­чи (или утвер­жде­ние, ле­жа­щее в ос­но­ве ре­ше­ния), но при­сут­ству­ют ло­ги­че­ски вер­ные пре­об­ра­зо­ва­ния с име­ю­щи­ми­ся фор­му­ла­ми, на­прав­лен­ные на ре­ше­ние за­да­чи.

ИЛИ

В ОДНОЙ из ис­ход­ных фор­мул, не­об­хо­ди­мых для ре­ше­ния за­да­чи (или в утвер­жде­нии, ле­жа­щем в ос­но­ве ре­ше­ния), до­пу­ще­на ошиб­ка, но при­сут­ству­ют ло­ги­че­ски вер­ные пре­об­ра­зо­ва­ния с име­ю­щи­ми­ся фор­му­ла­ми, на­прав­лен­ные на ре­ше­ние за­да­чи.

1
Все слу­чаи ре­ше­ния, ко­то­рые не со­от­вет­ству­ют вы­ше­ука­зан­ным кри­те­ри­ям вы­став­ле­ния оце­нок в 1, 2, 3 балла 0
Мак­си­маль­ное ко­ли­че­ство бал­лов 3
Раздел кодификатора ФИПИ/Решу ЕГЭ: 3.6.11 Ди­фрак­ция света. Ди­фрак­ци­он­ная решётка