Задания
Версия для печати и копирования в MS Word
Тип 21 № 38950
i

Ни­хро­мо­вый про­вод­ник дли­ной l=l_2 включён в цепь по­сто­ян­но­го тока. К нему под­клю­ча­ют вольт­метр таким об­ра­зом, что одна из клемм вольт­мет­ра всё время под­клю­че­на к на­ча­лу про­вод­ни­ка, а вто­рая может пе­ре­ме­щать­ся вдоль про­вод­ни­ка. На ри­сун­ке при­ве­де­на за­ви­си­мость по­ка­за­ний вольт­мет­ра U от рас­сто­я­ния x до на­ча­ла про­вод­ни­ка. Как за­ви­сит от x пло­щадь по­пе­реч­но­го се­че­ния про­вод­ни­ка? Ответ по­яс­ни­те, ука­зав, какие фи­зи­че­ские за­ко­но­мер­но­сти вы ис­поль­зо­ва­ли.

Спрятать решение

Ре­ше­ние.

Так как про­вод­ник вклю­чен в цепь по­сто­ян­но­го тока, то вы­пол­ня­ет­ся закон Ома для участ­ка цепи I= дробь: чис­ли­тель: U, зна­ме­на­тель: R конец дроби , где сила тока I оди­на­ко­ва на всех участ­ках цепи, на­пря­же­ние на обоих участ­ках рас­тет, судя по гра­фи­ку, ли­ней­но. Со­про­тив­ле­ние про­вод­ни­ка равно R= дробь: чис­ли­тель: \rho x, зна­ме­на­тель: S конец дроби , где S  — пло­щадь по­пе­реч­но­го се­че­ния. В силу ли­ней­ной за­ви­си­мо­сти на­пря­же­ния от длины на каж­дом участ­ке де­ла­ем вывод, что пло­щадь по­пе­реч­но­го се­че­ния при 0 мень­ше x мень­ше l_1 по­сто­ян­но и равно S_1, при l_1 мень­ше x мень­ше l_2 также по­сто­ян­но и равно S_2.

Учи­ты­вая, что на пер­вом участ­ке на­пря­же­ние рас­тет быст­рее, чем на вто­ром, де­ла­ем вывод, что пло­щадь по­пе­реч­но­го се­че­ния вто­ро­го участ­ка боль­ше, чем у пер­во­го S_2 боль­ше S_1.

 

Ответ: пло­щадь по­пе­реч­но­го се­че­ния по­сто­ян­на на каж­дом участ­ке и S_2 боль­ше S_1.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы

При­ве­де­но пол­ное пра­виль­ное ре­ше­ние, вклю­ча­ю­щее пра­виль­ный ответ и ис­чер­пы­ва­ю­щие вер­ные рас­суж­де­ния с пря­мым ука­за­ни­ем на­блю­да­е­мых яв­ле­ний и за­ко­нов

3

Дан пра­виль­ный ответ, и при­ве­де­но объ­яс­не­ние, но в ре­ше­нии име­ет­ся один или не­сколь­ко из сле­ду­ю­щих не­до­стат­ков.

В объ­яс­не­нии не ука­за­но или не ис­поль­зо­ва­ны одно из фи­зи­че­ских яв­ле­ний, свойств, опре­де­ле­ний или один из за­ко­нов (фор­мул), не­об­хо­ди­мых для пол­но­го вер­но­го объ­яс­не­ния. (Утвер­жде­ние, ле­жа­щее в ос­но­ве объ­яс­не­ния, не под­креп­ле­но со­от­вет­ству­ю­щим за­ко­ном, свой­ством, яв­ле­ни­ем, опре­де­ле­ни­ем и т.п.)

И (ИЛИ)

Ука­за­ны все не­об­хо­ди­мые для объ­яс­не­ния яв­ле­ния и за­ко­ны, за­ко­но­мер­но­сти, но в них со­дер­жит­ся один ло­ги­че­ский недочёт.

И (ИЛИ)

В ре­ше­нии име­ют­ся лиш­ние за­пи­си, не вхо­дя­щие в ре­ше­ние (воз­мож­но, не­вер­ные), ко­то­рые не от­де­ле­ны от ре­ше­ния и не зачёрк­ну­ты.

И (ИЛИ)

В ре­ше­нии име­ет­ся не­точ­ность в ука­за­нии на одно из фи­зи­че­ских яв­ле­ний, свойств, опре­де­ле­ний, за­ко­нов (фор­мул), не­об­хо­ди­мых для пол­но­го вер­но­го объ­яс­не­ния

2

Пред­став­ле­но ре­ше­ние, со­от­вет­ству­ю­щее од­но­му из сле­ду­ю­щих слу­ча­ев.

Дан пра­виль­ный ответ на во­прос за­да­ния, и при­ве­де­но объ­яс­не­ние, но в нём не ука­за­ны два яв­ле­ния или фи­зи­че­ских за­ко­на, не­об­хо­ди­мых для пол­но­го вер­но­го объ­яс­не­ния.

ИЛИ

Ука­за­ны все не­об­хо­ди­мые для объ­яс­не­ния яв­ле­ния и за­ко­ны, за­ко­но­мер­но­сти, но име­ю­щи­е­ся рас­суж­де­ния, на­прав­лен­ные на по­лу­че­ние от­ве­та на во­прос за­да­ния, не до­ве­де­ны до конца.

ИЛИ

Ука­за­ны все не­об­хо­ди­мые для объ­яс­не­ния яв­ле­ния и за­ко­ны, за­ко­но­мер­но­сти, но име­ю­щи­е­ся рас­суж­де­ния, при­во­дя­щие к от­ве­ту, со­дер­жат ошиб­ки.

ИЛИ

Ука­за­ны не все не­об­хо­ди­мые для объ­яс­не­ния яв­ле­ния и за­ко­ны, за­ко­но­мер­но­сти, но име­ют­ся вер­ные рас­суж­де­ния, на­прав­лен­ные на ре­ше­ние за­да­чи

1
Все слу­чаи ре­ше­ния, ко­то­рые не со­от­вет­ству­ют вы­ше­ука­зан­ным кри­те­ри­ям вы­став­ле­ния оце­нок в 1, 2, 3 балла0
Мак­си­маль­ный балл3
Раздел кодификатора ФИПИ/Решу ЕГЭ: 3.2.4 Элек­три­че­ское со­про­тив­ле­ние. За­ви­си­мость со­про­тив­ле­ния од­но­род­но­го про­вод­ни­ка от его длины и се­че­ния