СДАМ ГИА: РЕШУ ЕГЭ
Образовательный портал для подготовки к экзаменам
Физика
≡ физика
сайты - меню - вход - новости




Задания
Версия для печати и копирования в MS Word
Задание 4 № 631

Скорость тела, совершающего гармонические колебания меняется с течением времени в соответствии с уравнение где все величины выражены в СИ. Какова амплитуда колебаний скорости? (Ответ дайте в метрах в секунду.)

Решение.

Общий вид закона изменения скорости тела со временем, совершающего колебания, имеет вид

 

 

где  — амплитуда колебаний скорости. Сравнивая с заключаем, что амплитуда колебаний скорости равна

 

Ответ: 0,03.

Раздел кодификатора ФИПИ: 1.5.1 Гармонические колебания. Амплитуда и фаза колебаний. Кинематическое описание
Спрятать решение · ·
Андрій 15.05.2013 00:21

А разве закон не имеет вид:

v=A*w*cos(wt)

Алексей

Добрый день!

В частном случае, да (если положить ).

.

Андрій 16.06.2013 23:35

Здравствуйте!

 

Я совсем запутался!!!

В одних справочниках закон изменения скорости гармонических колебаний выглядит так:

1) v=Awcos(wt)

в других:

2) v=Awsin(wt)

 

А у вас на сайте увидел совсем другую формулу без "w" после амплитуды.

 

Как пользоваться такими формулами? Как тогда выглядят законы для координаты и ускорения?

Мой преподаватель говорил, что можна использовать и 1), и 2).

Заранее спасибо!

Алексей

Добрый день!

 

Все довольно просто. Сейчас я, возможно, скажу несколько сложных слов, но затем постараюсь разъяснить их смысл. Для простоты изложения речь будет идти об одномерном случае, на случай многих степеней свободы все легко обобщается.

 

Итак, главная задача механики --- найти зависимость координаты тела от времени, то есть, по сути, найти некоторую функцию, которая каждому моменту времени сопоставляет некоторое значение координаты. Любое движение мы описываем при помощи второго закона Ньютона. В этот закон входит ускорение, которое является второй производной координаты тела по времени, и сила, которая обычно зависит от самой координаты. Также сила может зависеть от скорости тела, то есть от первой производной координаты по времени. Таким образом, с математической точки зрения второй закон Ньютона представляет некоторое соотношение между координатой, ее первой и второй производными. Такое соотношение называется в математике дифференциальным уравнение. Старшая производная, входящая в такое уравнение, --- вторая. Математика говорит, что решение такого уравнения, то есть общий вид функции, удовлетворяющей нашему соотношению, зависит от двух произвольных постоянных, которые невозможно определить из уравнения. Эти произвольные постоянные определяются для каждого конкретного случая, например, при помощи так называемых начальных условий. То есть чтобы в точности понять, как будет двигаться тело, нужно знать не только, какие силы на него действуют, но и каковы его начальная координата и скорость. Две произвольные константы в решении подбираются таким образом, чтобы полученная нами функция и ее производная (то есть скорость) в начальный момент времени имели заданные значения.

 

Это абсолютно общая ситуация. Вспомните, когда мы говорим о движении тела с постоянным ускорением, чтобы в точности задать движение нам нужно именно два числа, начальная координата и начальная скорость.

 

Тоже самое справедливо и для колебания. Колебание конкретного маятника (то есть маятника с заданной собственной частотой) определяется также двумя числами. Обычно решение уравнения для маятника, получаемого из второго закона Ньютона, записывают в виде .

 

Здесь и играют как раз роль произвольных постоянных, которые нужно определять из начальных условий. Посчитаем скорость: . Пусть нам известно, что в нулевой момент времени координата и скорость маятника были равны и . Решив систему обычных уравнений , можно найти конкретные выражения для и через и .

 

Не буду приводить ответ в общем случае, если Вы захотите, то легко сделаете это сами. Расскажу только о конкретных случая. Пусть, например, известно, что в нулевой момент времени тело находится в положении равновесия (то есть ), а его скорость равна своей максимальной величине (то есть ). Тогда получаем для нашего конкретного случая, что система уравнений приобретает вид: . Из первого уравнения сразу понятно, что (первому уравнению, конечно, удовлетворяет и условие , но тогда наше решение получится нулевым, а нас это не устраивает). Второе тогда приобретает вид: , откуда . Таким образом мы нашли выражения для обеих постоянных. В итоге имеем: . При этом для ускорения получается . Если теперь обозначить через более привычное выражение для амплитуды , получатся более привычные формулы.

 

Рассмотрим еще один пример. Пусть теперь груз находится в крайнем положении, то есть его скорость равна нулю. Будем считать, что от отклонился в отрицательную сторону оси, то есть его координата равна . Тогда уравнения на начальные условия приобретают вид: . Из второго уравнения . Из первого: . Таким образом, для координаты имеет: (второе равенство при помощи формулы приведения). Для скорости: . Для ускорения: .

 

И так далее.

Конкретные формулы зависят от начальных данных. С учетом периодичности синусов и косинусов, пользуясь разными формулами приведения, можно из формул убирать знаки добавлять фазы и т.д.

 

Что касается формулы в задаче, там нет , частоты, так как подставлено ее конкретное значение: