Задания
Версия для печати и копирования в MS Word
Тип Д28 C1 № 2940
i

В без­вет­рен­ную по­го­ду са­мо­лет за­тра­чи­ва­ет на пе­ре­лет между го­ро­да­ми 6 часов. Если во время по­ле­та дует бо­ко­вой ветер со ско­ро­стью 20м/с пер­пен­ди­ку­ляр­но линии по­ле­та, то са­мо­лет за­тра­чи­ва­ет на пе­ре­лет на не­сколь­ко минут боль­ше. Опре­де­ли­те, на какое время уве­ли­чи­ва­ет­ся время по­ле­та, если ско­рость са­мо­ле­та от­но­си­тель­но воз­ду­ха по­сто­ян­на и равна 328км/ч.

Спрятать решение

Ре­ше­ние.

Путь, прой­ден­ный са­мо­ле­том в пер­вом слу­чае: s= v _СВt_1, где  v _СВ  — ско­рость са­мо­ле­та от­но­си­тель­но воз­ду­ха.

 

 

Закон сло­же­ния ско­ро­стей в век­тор­ном виде для пе­ре­ле­та во время ветра: \vec v _C=\vec v _СВ плюс \vec v _B, где \vec v _B  — ско­рость ветра. Вы­ра­же­ние для мо­ду­ля ско­ро­сти са­мо­ле­та от­но­си­тель­но Земли во вто­ром слу­чае имеет вид:

 v _C= ко­рень из: на­ча­ло ар­гу­мен­та: v конец ар­гу­мен­та _CB в квад­ра­те минус v _B в квад­ра­те

Тогда путь, прой­ден­ный са­мо­ле­том во вто­ром слу­чае:

s= v _Ct_2= ко­рень из: на­ча­ло ар­гу­мен­та: v конец ар­гу­мен­та _CB в квад­ра­те минус v _B в квад­ра­те умно­жить на t_2.

Сле­до­ва­тель­но:

 v _CBt_1= ко­рень из: на­ча­ло ар­гу­мен­та: v конец ар­гу­мен­та _CB в квад­ра­те минус v _B в квад­ра­те умно­жить на t_2.

От­сю­да на­хо­дим:

t_2= дробь: чис­ли­тель: t_1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 1 минус левая круг­лая скоб­ка дробь: чис­ли­тель: v конец ар­гу­мен­та _B, зна­ме­на­тель: v _CB конец дроби пра­вая круг­лая скоб­ка в квад­ра­те конец дроби и t=t_2 минус t_1.

 

Ответ: t  =  9 мин.

 

Кри­те­рии оцен­ки вы­пол­не­ния за­да­ния

Баллы

При­ве­де­но пол­ное пра­виль­ное ре­ше­ние, вклю­ча­ю­щее сле­ду­ю­щие эле­мен­ты:

1.  верно за­пи­са­ны фор­му­лы, вы­ра­жа­ю­щие фи­зи­че­ские за­ко­ны, при­ме­не­ние ко­то­рых не­об­хо­ди­мо для ре­ше­ния за­да­чи вы­бран­ным спо­со­бом;

2.  про­ве­де­ны не­об­хо­ди­мые ма­те­ма­ти­че­ские пре­об­ра­зо­ва­ния и рас­че­ты, при­во­дя­щие к пра­виль­но­му чис­ло­во­му от­ве­ту, и пред­став­лен ответ (вклю­чая еди­ни­цы из­ме­ре­ния). При этом до­пус­ка­ет­ся ре­ше­ние «по ча­стям» (с про­ме­жу­точ­ны­ми вы­чис­ле­ни­я­ми).

3

Пред­став­лен­ное ре­ше­ние со­дер­жит п. 1 пол­но­го ре­ше­ния, но и имеет один из сле­ду­ю­щих не­до­стат­ков:

- в не­об­хо­ди­мых ма­те­ма­ти­че­ских пре­об­ра­зо­ва­ни­ях или вы­чис­ле­ни­ях до­пу­ще­на ошиб­ка;

 

ИЛИ

- не­об­хо­ди­мые ма­те­ма­ти­че­ские пре­об­ра­зо­ва­ния и вы­чис­ле­ния ло­ги­че­ски верны, не со­дер­жат оши­бок, но не за­кон­че­ны;

 

ИЛИ

- не пред­став­ле­ны пре­об­ра­зо­ва­ния, при­во­дя­щие к от­ве­ту, но за­пи­сан пра­виль­ный чис­ло­вой ответ или ответ в общем виде;

 

ИЛИ

ре­ше­ние со­дер­жит ошиб­ку в не­об­хо­ди­мых ма­те­ма­ти­че­ских пре­об­ра­зо­ва­ни­ях и не до­ве­де­но до чис­ло­во­го от­ве­та.

2

Пред­став­ле­ны за­пи­си, со­от­вет­ству­ю­щие од­но­му из сле­ду­ю­щих слу­ча­ев:

- пред­став­ле­ны толь­ко по­ло­же­ния и фор­му­лы, вы­ра­жа­ю­щие фи­зи­че­ские за­ко­ны, при­ме­не­ние ко­то­рых не­об­хо­ди­мо для ре­ше­ния за­да­чи, без каких-⁠либо пре­об­ра­зо­ва­ний с их ис­поль­зо­ва­ни­ем, на­прав­лен­ных на ре­ше­ние за­да­чи, и от­ве­та;

ИЛИ

- в ре­ше­нии от­сут­ству­ет ОДНА из ис­ход­ных фор­мул, не­об­хо­ди­мая для ре­ше­ния за­да­чи (или утвер­жде­ние, ле­жа­щее в ос­но­ве ре­ше­ния), но при­сут­ству­ют ло­ги­че­ски вер­ные пре­об­ра­зо­ва­ния с име­ю­щи­ми­ся фор­му­ла­ми, на­прав­лен­ные на ре­ше­ние за­да­чи;

ИЛИ

в ОДНОЙ из ис­ход­ных фор­мул, не­об­хо­ди­мых для ре­ше­ния за­да­чи (или утвер­жде­нии, ле­жа­щем в ос­но­ве ре­ше­ния), до­пу­ще­на ошиб­ка, но при­сут­ству­ют ло­ги­че­ски вер­ные пре­об­ра­зо­ва­ния с име­ю­щи­ми­ся фор­му­ла­ми, на­прав­лен­ные на ре­ше­ние за­да­чи.

1

Все слу­чаи ре­ше­ния, ко­то­рые не со­от­вет­ству­ют вы­ше­ука­зан­ным кри­те­ри­ям вы­став­ле­ния оце­нок в 1, 2, 3 балла.

0

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы
При­ве­де­но пол­ное ре­ше­ние, вклю­ча­ю­щее сле­ду­ю­щие эле­мен­ты:

I) за­пи­са­ны по­ло­же­ния тео­рии и фи­зи­че­ские за­ко­ны, за­ко­но­мер­но­сти, при­ме­не­ние ко­то­рых не­об­хо­ди­мо для ре­ше­ния за­да­чи вы­бран­ным спо­со­бом (в дан­ном слу­чае: закон сло­же­ния ско­ро­стей, урав­не­ния ки­не­ма­ти­ки для рав­но­мер­но­го дви­же­ния);

II) опи­са­ны все вновь вво­ди­мые в ре­ше­нии бук­вен­ные обо­зна­че­ния фи­зи­че­ских ве­ли­чин (за ис­клю­че­ни­ем обо­зна­че­ний кон­стант, ука­зан­ных в ва­ри­ан­те КИМ, и обо­зна­че­ний ве­ли­чин, ис­поль­зу­е­мых в усло­вии за­да­чи);

III) про­ве­де­ны не­об­хо­ди­мые ма­те­ма­ти­че­ские пре­об­ра­зо­ва­ния, при­во­дя­щие к пра­виль­но­му от­ве­ту;

IV) пред­став­лен пра­виль­ный ответ

3
Пра­виль­но за­пи­са­ны все не­об­хо­ди­мые по­ло­же­ния тео­рии, фи­зи­че­ские за­ко­ны, за­ко­но­мер­но­сти, и про­ве­де­ны не­об­хо­ди­мые пре­об­ра­зо­ва­ния. Но име­ют­ся сле­ду­ю­щие не­до­стат­ки.

За­пи­си, со­от­вет­ству­ю­щие пунк­ту II, пред­став­ле­ны не в пол­ном объ­е­ме или от­сут­ству­ют.

ИЛИ

В ре­ше­нии лиш­ние за­пи­си, не вхо­дя­щие в ре­ше­ние (воз­мож­но, не­вер­ные), не от­де­ле­ны от ре­ше­ния (не за­черк­ну­ты; не за­клю­че­ны в скоб­ки, рамку и т. п.).

ИЛИ

В не­об­хо­ди­мых ма­те­ма­ти­че­ских пре­об­ра­зо­ва­ни­ях или вы­чис­ле­ни­ях до­пу­ще­ны ошиб­ки, и (или)

пре­об­ра­зо­ва­ния/вы­чис­ле­ния не до­ве­де­ны до конца.

ИЛИ

От­сут­ству­ет пункт IV, или в нем до­пу­ще­на ошиб­ка

2
Пред­став­ле­ны за­пи­си, со­от­вет­ству­ю­щие од­но­му из сле­ду­ю­щих слу­ча­ев.

Пред­став­ле­ны толь­ко по­ло­же­ния и фор­му­лы, вы­ра­жа­ю­щие фи­зи­че­ские за­ко­ны, при­ме­не­ние ко­то­рых не­об­хо­ди­мо для ре­ше­ния за­да­чи, без каких-⁠либо пре­об­ра­зо­ва­ний с их ис­поль­зо­ва­ни­ем, на­прав­лен­ных на ре­ше­ние за­да­чи, и от­ве­та.

ИЛИ

В ре­ше­нии от­сут­ству­ет ОДНА из ис­ход­ных фор­мул, не­об­хо­ди­мая для ре­ше­ния за­да­чи (или утвер­жде­ние, ле­жа­щее в ос­но­ве ре­ше­ния), но при­сут­ству­ют ло­ги­че­ски вер­ные пре­об­ра­зо­ва­ния с име­ю­щи­ми­ся фор­му­ла­ми, на­прав­лен­ные на ре­ше­ние за­да­чи.

ИЛИ

В ОДНОЙ из ис­ход­ных фор­мул, не­об­хо­ди­мых для ре­ше­ния за­да­чи (или в утвер­жде­нии, ле­жа­щем в ос­но­ве ре­ше­ния), до­пу­ще­на ошиб­ка, но при­сут­ству­ют ло­ги­че­ски вер­ные пре­об­ра­зо­ва­ния с име­ю­щи­ми­ся фор­му­ла­ми, на­прав­лен­ные на ре­ше­ние за­да­чи

1
Все слу­чаи ре­ше­ния, ко­то­рые не со­от­вет­ству­ют вы­ше­ука­зан­ным кри­те­ри­ям вы­став­ле­ния оце­нок в 1, 2, 3 балла0
Мак­си­маль­ный балл3
Раздел кодификатора ФИПИ/Решу ЕГЭ: 1.1.3 Ско­рость ма­те­ри­аль­ной точки
Гость 09.06.2012 19:48

Не по­нят­но от­ку­да бе­рут­ся фор­му­лы. И часто не по­нят­но как вы де­ла­е­те за­ме­ну и как со­кра­ща­е­те дробь. Я по­ни­маю, что фи­зи­ки здесь мало, но что да как я не по­ни­маю. В школе объ­яс­ня­ет­ся все по­дроб­нее.

Алексей

Доб­рый день!

Это фор­му­лы для рав­но­мер­но­го пря­мо­ли­ней­но­го дви­же­ния. Ско­ро­сти скла­ды­ва­ют­ся по тео­ре­ме Пи­фа­го­ра.

Когда дует ветер, при­хо­дит­ся на­прав­лять са­мо­лет не стро­го на пункт на­зна­че­ния, а под углом, чтобы ском­пен­си­ро­вать то, что ветер сно­сит са­мо­лет. Ско­рость са­мо­ле­та раз­ла­га­ет­ся на две ком­по­нен­ты: про­доль­ную, ко­то­рая по­ка­зы­ва­ет, с какой в итоге ско­ро­стью про­ис­хо­дит при­бли­же­ние к пунк­ту на­зна­че­ния, и по­пе­реч­ная, ко­то­рая обес­пе­чи­ва­ет выше опи­сан­ную ком­пен­са­цию.