Задания
Версия для печати и копирования в MS Word
Тип 22 № 43073
i

По одной пря­мой нав­стре­чу друг другу дви­жут­ся два пла­сти­ли­но­вых ша­ри­ка, массы ко­то­рых равны 0,5 кг и 0,3 кг со­от­вет­ствен­но. В ре­зуль­та­те столк­но­ве­ния ша­ри­ки сли­па­ют­ся. Чему будет равен мо­дуль ско­ро­сти ша­ри­ков сразу после столк­но­ве­ния, если перед столк­но­ве­ни­ем мо­дуль ско­ро­сти каж­до­го из них был равен 7 м/с? Вре­ме­нем вза­и­мо­дей­ствия ша­ри­ков пре­не­бречь.

Спрятать решение

Ре­ше­ние.

Для ма­ло­го вре­ме­ни вза­и­мо­дей­ствия тел можно при­ме­нить закон со­хра­не­ния им­пуль­са:

m_1 \vec v _1 плюс m_2 \vec v _2= левая круг­лая скоб­ка m_1 плюс m_2 пра­вая круг­лая скоб­ка \vecu

где u - ско­рость дви­же­ния ша­ри­ков после не­упру­го­го вза­и­мо­дей­ствия. При­чем, так как масса пер­во­го ша­ри­ка боль­ше, а ско­ро­сти ша­ри­ков до вза­и­мо­дей­ствия оди­на­ко­вы по мо­ду­лю, то слип­ши­е­ся ша­ри­ки будут дви­гать­ся в на­прав­ле­нии дви­же­ния пер­во­го ша­ри­ка. В про­ек­ции на го­ри­зон­таль­ную ось, на­прав­лен­ную в сто­ро­ну дви­же­ния пер­во­го ша­ри­ка:

 v левая круг­лая скоб­ка m_1 минус m_2 пра­вая круг­лая скоб­ка =u левая круг­лая скоб­ка m_1 плюс m_2 пра­вая круг­лая скоб­ка ,

от­ку­да ско­рость ша­ри­ков после вза­и­мо­дей­ствия

u= дробь: чис­ли­тель: v левая круг­лая скоб­ка m_1 минус m_2 пра­вая круг­лая скоб­ка , зна­ме­на­тель: m_1 плюс m_2 конец дроби = дробь: чис­ли­тель: 7 умно­жить на левая круг­лая скоб­ка 0,5 минус 0,3 пра­вая круг­лая скоб­ка , зна­ме­на­тель: 0,5 плюс 0,3 конец дроби =1,75 м/с .

Ответ: 1,75 м/с.

Спрятать критерии
Критерии проверки:

Кри­те­рии оце­ни­ва­ния вы­пол­не­ния за­да­нияБаллы

При­ве­де­но пол­ное ре­ше­ние, вклю­ча­ю­щее сле­ду­ю­щие эле­мен­ты:

I) за­пи­са­ны по­ло­же­ния тео­рии и фи­зи­че­ские за­ко­ны, за­ко­но­мер­но­сти, при­ме­не­ние ко­то­рых не­об­хо­ди­мо для ре­ше­ния за­да­чи вы­бран­ным спо­со­бом;

II) опи­са­ны все вновь вво­ди­мые в ре­ше­нии бук­вен­ные обо­зна­че­ния фи­зи­че­ских ве­ли­чин (за ис­клю­че­ни­ем обо­зна­че­ний кон­стант, ука­зан­ных в ва­ри­ан­те КИМ, обо­зна­че­ний, ис­поль­зу­е­мых в усло­вии за­да­чи, и стан­дарт­ных обо­зна­че­ний ве­ли­чин, ис­поль­зу­е­мых при на­пи­са­нии фи­зи­че­ских за­ко­нов);

III) пред­став­ле­ны не­об­хо­ди­мые ма­те­ма­ти­че­ские пре­об­ра­зо­ва­ния и расчёты, при­во­дя­щие к пра­виль­но­му чис­ло­во­му от­ве­ту (до­пус­ка­ет­ся ре­ше­ние «по ча­стям» с про­ме­жу­точ­ны­ми вы­чис­ле­ни­я­ми);

IV) пред­став­лен пра­виль­ный ответ с ука­за­ни­ем еди­ниц из­ме­ре­ния ис­ко­мой ве­ли­чи­ны

2

Пра­виль­но за­пи­са­ны все не­об­хо­ди­мые по­ло­же­ния тео­рии, фи­зи­че­ские за­ко­ны, за­ко­но­мер­но­сти, и про­ве­де­ны пре­об­ра­зо­ва­ния, на­прав­лен­ные на ре­ше­ние за­да­чи, но име­ет­ся один или не­сколь­ко из сле­ду­ю­щих не­до­стат­ков.

За­пи­си, со­от­вет­ству­ю­щие пунк­ту II, пред­став­ле­ны не в пол­ном объёме или от­сут­ству­ют.

И (ИЛИ)

В ре­ше­нии име­ют­ся лиш­ние за­пи­си, не вхо­дя­щие в ре­ше­ние (воз­мож­но, не­вер­ные), ко­то­рые не от­де­ле­ны от ре­ше­ния и не зачёрк­ну­ты.

И (ИЛИ)

В не­об­хо­ди­мых ма­те­ма­ти­че­ских пре­об­ра­зо­ва­ни­ях или вы­чис­ле­ни­ях до­пу­ще­ны ошиб­ки, и (или) в ма­те­ма­ти­че­ских пре­об­ра­зо­ва­ни­ях/вы­чис­ле­ни­ях про­пу­ще­ны ло­ги­че­ски важ­ные шаги.

И (ИЛИ)

От­сут­ству­ет пункт IV, или в нём до­пу­ще­на ошиб­ка (в том числе в за­пи­си еди­ниц из­ме­ре­ния ве­ли­чи­ны)

1

Все слу­чаи ре­ше­ния, ко­то­рые не со­от­вет­ству­ют вы­ше­ука­зан­ным кри­те­ри­ям вы­став­ле­ния оце­нок в 1 или 2 балла

0
Мак­си­маль­ный балл2
Источник: ЕГЭ по фи­зи­ке 02.06.2025. Ос­нов­ная волна. Даль­ний Во­сток
Раздел кодификатора ФИПИ/Решу ЕГЭ: 1.4.3 Закон из­ме­не­ния и со­хра­не­ния им­пуль­са