Тип Д29 C2 № 4439 

Раздел кодификатора ФИПИ/Решу ЕГЭ: Механика (расчетная задача). Движение по окружности
i
Известно, что один оборот вокруг своей оси Венера совершает примерно за 243 земных суток, а масса Венеры составляет 0,82 от массы Земли. На орбиту какого радиуса надо вывести спутник Венеры, чтобы он все время «висел» над одной и той же точкой поверхности? Известно, что спутники Земли, «висящие» над одной и той же точкой поверхности, летают по орбите радиусом
км.
Спрятать решениеРешение. При движении спутника по круговой орбите радиусом R вокруг планеты центростремительное ускорение обеспечивается силой гравитационного притяжения спутника к планете, поэтому второй закон Ньютона записывается в виде
или

где m и M — массы спутника и планеты, гравитационная постоянная,
— угловая скорость вращения спутника вокруг планеты, T — период обращения спутника. Подставляя, получаем величину радиуса орбиты:

Из полученной формулы найдем отношение радиусов орбит спутников Венеры и Земли:

Период обращения спутника вокруг Земли
сутки, поэтому, подставляя данные из условия, находим:

Ответ: 
Примечание Д. Д. Гущина.
Внимательный читатель заметит, что найденный радиус орбиты превышает радиус сферы Хилла, равный для Венеры одному миллиону километров. Иными словами, притяжения Венеры не хватает, чтобы удерживать настолько удаленный от нее спутник. Поэтому со временем он покинет орбиту Венеры и станет независимо от Венеры вращаться вокруг Солнца. Чтобы этого не произошло, необходимо (пока позволяют запасы топлива) корректировать орбиту спутника двигателями.
Пытливый читатель может заинтересоваться вопросом о том, каков радиус сферы Хилла для Земли. Он равен 1,47 млн км. С удовольствием отметим, что Луна удалена от Земли на 0,384 млн км, поэтому Луна не покинет орбиту Земли. Подробности об этом можно прочитать в англоязычной Википедии.
Спрятать критерииКритерии проверки:| Критерии оценивания выполнения задания | Баллы |
|---|
| Приведено полное решение, включающее следующие элементы: I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае - 2-й закон Ньютона для кругового движения спутника вокруг планеты, закон всемирного тяготения и условие постоянного нахождения спутника над одной и той же точкой планеты): II) описаны все вводимые в решение буквенные обозначения физических величин {за исключением, возможно, обозначений констант, указанных в варианте КИМ, и обозначений, используемых в условии задачи): III) проведены необходимые математические преобразования (допускается вербальное указание на их проведение) и расчеты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); IV) представлен правильный ответ с указанием единиц измерения искомой величины. | 3 |
| Правильно записаны необходимые положения теории и физические законы, закономерности, проведены необходимые преобразования и представлен правильный ответ с указанием единиц измерения искомой величины. Но имеется один из следующих недостатков. Записи, соответствующие одному или всем пунктам: II и III - представлены не в полном объеме или отсутствуют. ИЛИ При ПОЛНОМ правильном решении лишние записи, не входящие в решение (возможно, неверные), не отделены от решения (не зачеркнуты, не заключены в скобки, рамку и т. п.). ИЛИ При ПОЛНОМ решении в необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) преобразования/вычисления не доведены до конца. ИЛИ При ПОЛНОМ решении отсутствует пункт IV, или в нем допущена ошибка. | 2 |
| Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. | 1 |
| Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла. | 0 |
| Максимальный балл | 3 |
Ответ: 
Раздел кодификатора ФИПИ/Решу ЕГЭ: