Горка с двумя вершинами, высоты которых h и покоится на гладкой горизонтальной поверхности стола (см. рисунок). На правой вершине горки находится монета. От незначительного толчка монета и горка приходят в движение, причем монета движется влево, не отрываясь от гладкой поверхности горки, а поступательно движущаяся горка не отрывается от стола. В некоторый момент времени монета оказалась на левой вершине горки, имея скорость
Найдите скорость горки в этот момент.
На систему тел «монета + горка» действуют внешние силы (тяжести и реакции стола), но они направлены по вертикали, поэтому проекция импульса системы на горизонтальную ось Оx системы отсчета, связанной со столом, сохраняется. В начальный момент времени импульс системы равен нулю, поэтому для интересующего нас момента времени, можно написать:
здесь — скорость горки относительно горизонтальной поверхности.
Работа сил тяжести определяется изменением потенциальной энергии, а суммарная работа сил реакции равна нулю, так как поверхности гладкие. Следовательно, полная механическая энергия системы тел, равная сумме кинетической и потенциальной, сохраняется. Так как потенциальная энергия горки не изменилась, получаем уравнение
Решая систему из этих двух уравнений, для скорости горки получаем
Ответ:

