Равнобедренный прямоугольный треугольник ABC расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет АС лежит на главной оптической оси линзы (см. рисунок). Вершина прямого угла С лежит ближе к центру линзы, чем вершина острого угла А. Расстояние от центра линзы до точки А равно удвоенному фокусному расстоянию линзы, АС = 4 см. Постройте изображение треугольника и найдите площадь получившейся фигуры.
Спрятать решениеРешение. Изображение треугольника построено на рисунке.

Изображение точки B удобно найти как пересечение луча, проходящего через центр линзы и луча, падающего на линзу параллельно главной оптической оси.
Изображение точки С находится в точности под изображением точки В. Положение изображения точки А легко определить из формулы тонкой линзы:

Поскольку точка А находится в двойном фокусе, то
а значит, и
то есть изображение точки А также находится в двойном фокусе.
Наконец, легко понять, что изображение треугольника вновь будет треугольником. Действительно, если пропустить луч через сторону ВА, то после преломления на этом луче будут находиться изображения всех точек со стороны ВА, то есть гипотенуза прямоугольного треугольника перейдет в гипотенузу треугольника-изображения.
Определим фокусное расстояние

Обозначим катет треугольника ABC через 
Найдем расстояние от линзы до изображения точки С (
):

Горизонтальный катет равен

Из подобия треугольников для вертикального катета треугольника-изображения имеем

Таким образом, площадь треугольника изображения равна:

Ответ: 
Примечание:
В решение можно было использовать тот факт, что треугольник-изображение также является равнобедренным. Это следует из того факта, что луч, проходящий через двойной фокус после преломления в линзе снова попадет в двойной фокус. Тем самым после преломления в линзе луч идет по тем же самым углом к главной оптической оси, что и до преломления в линзе. Поскольку в нашем случае этот угол равен
то равнобедренный треугольник снова получится равнобедренным.
Спрятать критерииКритерии проверки:| Критерии оценивания выполнения задания | Баллы |
|---|
| Приведено полное решение, включающее следующие элементы: I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае — формула тонкой линзы); II) описаны все вводимые в решение буквенные обозначения физических величин (за исключением, возможно, обозначений констант, указанных в варианте КИМ, и обозначений, используемых в условии задачи); III) проведены необходимые математические преобразования (допускается вербальное указание на их проведение) и расчеты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); IV) представлен правильный ответ с указанием единиц измерения искомой величины. | 3 |
| Правильно записаны необходимые положения теории и физические законы, закономерности, проведены необходимые преобразования и представлен правильный ответ с указанием единиц измерения искомой величины. Но имеется один из следующих недостатков. Записи, соответствующие одному или обоим пунктам: II и III — представлены не в полном объеме или отсутствуют. ИЛИ При ПОЛНОМ правильном решении лишние записи, не входящие в решение (возможно, неверные), не отделены от решения (не зачеркнуты, не заключены в скобки, рамку и т. п.). ИЛИ При ПОЛНОМ решении в необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) преобразования/вычисления не доведены до конца. ИЛИ При ПОЛНОМ решении отсутствует пункт IV, или в нем допущена ошибка. | 2 |
| Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. | 1 |
| Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла. | 0 |
| Максимальный балл | 3 |